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The interaction V ( r )  = -Ze’/(r+ p )  and the confluent 
Heun equation 

Harold Exton 
Nyuggel, Lunabister, Dunrossness, Shetland ZE2 9JH, UK 

Received 14 January 1991 

Abstract. The Sehriidinger equation with interaction - Z e 2 / ( r + O )  is shown, for general 
values of the parameten, to be reducible to the confluent Heun equation. 

For the potential -Ze’/(r+p), the radial Schrodinger equation is 

y ” + [ 2 €  + (2ze2/(r+P))  - ( I ( / +  1)/r2)]y(r) = 0. (1) 

This interaction has recently attracted some attention in connection with, among other 
things, the model of the potential due to a smeared charge. See de Meyer and van den 
Berghe (1990). If / = 0 (or the physically inadmissible value I = -l), this equation can 
be solved in terms of confluent hypergeometric functions. Otherwise, the problem is 
reduced to solutions of the confluent Heun equation. 

This last mentioned equation has three singularities in all. Two of these are regular 
and the remaining singularity is irregular of the second type. The confluent Heun 
equation may be characterized by the Ince symbol [0,2, 12], Ince (1926). See also the 
references in Marcilhacy and Pons (1985) for example. In its canonical form, this 
equation may be written 

z( 1 - z)w”+[c-(a + b+ 1)r - kh2z2] w’-(ab+ kz )w  = 0 (2) 

and its normal form is 

z2(1 - ~ ) ~ y ” =  {(k2h2Z4/4)  + k[(h2(a + b+ 1)/2) - l]z3 

+[(a(a+ l )+b(b+  1))/2-(kh2(1 + ~ / 2 ) / 2 ) ] ~ ~  

+[ab-(c(a+ b+ 1)/2)]z+c[(c/2- 1)/23}y (3) 

(4) 

where 
= exp(kh2z/2)ze/2(z - 1)(“+b+1-‘+*h2)/2 W. 

In ( l ) ,  put r = - p z  and obtain 

z2(1 - ~ ) ~ y ” =  { ~ p ~ ~ z ~ - 2 p ( ~ e ~ + 2 p E ) z ~ + [ 2 p ( Z e ~ + 2 p € )  - /(/+ 1)]r2  

+21( /+  1)z- /( /+ 1))y ( 5 )  

after a little rearrangement. It is then immediately evident that ( 5 )  is of the same form 
as (3) and that ( 1 )  can be represented as a confluent Heun equation. 
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